
Am. J. Hum. Genet. 63:259–266, 1998

259

PedCheck: A Program for Identification of Genotype Incompatibilities in
Linkage Analysis
Jeffrey R. O’Connell1 and Daniel E. Weeks1,2

1Department of Human Genetics, University of Pittsburgh, Pittsburgh; and 2The Wellcome Trust Centre for Human Genetics, University of
Oxford, Oxford

Summary

Prior to performance of linkage analysis, elimination of
all Mendelian inconsistencies in the pedigree data is es-
sential. Often, identification of erroneous genotypes by
visual inspection can be very difficult and time consum-
ing. In fact, sometimes the errors are not recognized until
the stage of running linkage-analysis software. The ef-
fort then required to find the erroneous genotypes and
to cross-reference pedigree and marker data that may
have been recoded and renumbered can be not only te-
dious but also quite daunting, in the case of very large
pedigrees. We have implemented four error-checking al-
gorithms in a new computer program, PedCheck, which
will assist researchers in identifying all Mendelian in-
consistencies in pedigree data and will provide them with
useful and detailed diagnostic information to help re-
solve the errors. Our program, which uses many of the
algorithms implemented in VITESSE, handles large data
sets quickly and efficiently, accepts a variety of input
formats, and offers various error-checking algorithms
that match the subtlety of the pedigree error.
These algorithms range from simple parent-off-
spring–compatibility checks to a single-locus likelihood-
based statistic that identifies and ranks the individuals
most likely to be in error. We use various real data sets
to illustrate the power and effectiveness of our program.

Introduction

When marker genotype data are generated, one often
must go through a tedious iterative process of correcting
errors that are incompatible with Mendelian inheritance.
To this end, if visual inspection is not sufficient to iden-

Received October 2, 1997; accepted for publication April 17, 1998;
electronically published May 22, 1998.

Address for correspondence and reprints: Dr. Jeffrey R. O’Connell,
Department of Human Genetics, University of Pittsburgh, 130 DeSoto
Street, Pittsburgh, PA 15261. E-mail: jeff@sherlock.hgen.pitt.edu

� 1998 by The American Society of Human Genetics. All rights reserved.
0002-9297/98/6301-0036$02.00

tify the problem, the researcher often runs a diagnostic
program, such as UNKNOWN of the LINKAGE pack-
age (Lathrop and Lalouel 1984; Lathrop et al. 1984,
1986) or the Genetic Analysis System (GAS), which use
genotype-elimination techniques (Lange and Goradia
1987; Lange and Weeks 1989), to try to identify the
source of the error. However, as Stringham and Boehnke
(1996) recently pointed out, these programs are not help-
ful enough. For example, in the interest of speed, only
a partial genotype-elimination algorithm was imple-
mented in GAS; so, it may fail to identify all Mendelian
inconsistencies. Likewise, not only does UNKNOWN
sometimes fail to provide helpful diagnostic information
(see discussion in Stringham and Boehnke 1996), but it
also can take a painfully long time to run as the number
of alleles at the marker under consideration becomes
large.

Stringham and Boehnke (1996) recently developed an
algorithm to calculate the posterior probability of ge-
notyping error for each member of a pedigree and im-
plemented it by using the MENDEL package (Lange et
al. 1988). In their first method, each genotyped pedigree
member is allowed to have every possible genotype, with
each genotype weighted by the probability that the ge-
notype is in error, and then the posterior probability of
the individual’s genotype is computed. Since this method
is too computationally intensive in the presence of highly
polymorphic markers, they also developed a faster al-
gorithm, employing a simpler model, in which only one
genotyped pedigree member at a time is allowed to have
every possible genotype and the other pedigree members
are assigned their original genotypes. They then com-
puted the probability for each genotyped pedigree mem-
ber, conditioned on all other genotyped members being
correct. Their faster algorithm identifies those individ-
uals for whom elimination of their genotypes from the
data will eliminate the inconsistency in the pedigree data.
Still, their two approaches are not automated to handle
more than one marker at a time and slow down in the
presence of highly polymorphic markers.

Thus, there is still a clear need for a rapid and efficient
program to preprocess marker data, to determine if there
are any typing errors and to assist the user in identifying

260 Am. J. Hum. Genet. 63:259–266, 1998

Figure 1 Pedigree with level 1 errors

Figure 2 Pedigree without level 1 errors but with a level 2 error

them so that these errors can be resolved quickly. Ideally
the program would be fast and efficient, would handle
large data sets with perhaps hundreds of markers and
thousands of individuals, would give detailed diagnostic
information on the source of these errors, and would
identify the individuals involved. It also would offer dif-
ferent degrees of checking, from a very quick check
based on simple parent-offspring matching and allele
counting, within component nuclear families, to a more
complex and powerful check using full-pedigree likeli-
hoods to help identify more-subtle errors.

Therefore, to provide researchers with such a tool, we
have written a new program, PedCheck, for identifica-
tion of marker-typing incompatibilities in pedigree data,
that offers the capabilities described above and that also
overcomes some of the difficulties and limitations pres-
ent in existing packages. In particular, it relies on the
set-recoding algorithm of VITESSE (O’Connell and
Weeks 1995), to avoid the speed bottleneck that hinders
UNKNOWN in its genotype elimination and MENDEL
in its likelihood calculations; it processes one locus at a
time, so that it is not limited by the number of markers
it can handle; and it uses full genotype elimination to
offer a check that is more comprehensive than that of
GAS.

Error-Checking Algorithms

We introduce four error-checking algorithms to han-
dle different types of data sets and different degrees of
difficulty in the identification of an error. Each successive
algorithm employs a more rigorous and powerful tech-

nique designed to identify the more subtle errors. For
example, to check raw laboratory data that might have
numerous data-entry or genotype-scoring errors, a like-
lihood-based check would be inefficient and may offer
no additional information if simple parent-child rela-
tions can reveal these errors. Likewise, if a large pedigree
has a subtle error that simple parent-child relationships
cannot identify, then a more powerful check is required.

Nuclear-Family Algorithm

For each marker, the nuclear-family algorithm uses the
known genotypes to check for inconsistencies between
parents and offspring. An error is flagged if one or more
of the following conditions is true: the alleles of a child
and a parent are incompatible; the child is compatible
with each parent separately but not when both parents
are considered simultaneously; there are more than four
alleles in a sibship; there are more than three alleles in
a sibship with a homozygous child; there are more than
two alleles in a sibship with two different homozygotes
among the sibs; an allele is out of bounds of any specified
range; at an X-linked locus, a male is not coded as “ho-
mozygous,” as required by the LINKAGE programs; or
an individual has only one allele defined in an autosomal
system (most programs expect both alleles to be speci-
fied). Figure 1 illustrates three of these errors. First, there
are more than four distinct alleles among the genotypes
of siblings 3, 4, and 5; second, the genotypes of parent
3 and child 7 are incompatible; and third, under the
assumption that there were only seven alleles specified
for this marker, the 9 allele for individual 6 is out of
range. Note that the nuclear-family algorithm is very
rapid, because it involves only nuclear-family informa-
tion and no genotype elimination.

O’Connell and Weeks: Genotype-Incompatibility Detection 261

Figure 3 Pedigree with two critical genotypes, in individuals 2
and 4. The symbols for these individuals have a boldface border.

The nuclear-family algorithm is appropriate as a first
check, particularly for large data sets that have not been
checked previously. If there are no errors or if the errors
have been corrected, then there still may be inconsisten-
cies due to the revised information or to the genotype
relations inferred by analysis of pedigree members other
than the sibs, offspring, or parents of an individual.
Moreover, with regard to the presence of loops, the nu-
clear-family algorithm ignores loop information in the
pedigree file, since only nuclear-family information is
used. Thus, to identify errors that may arise in these
situations, we introduce a second error-checking
algorithm.

Genotype-Elimination Algorithm

Genotype elimination is performed via our extended
version of the Lange-Goradia algorithm (Lange and Gor-
adia 1987; Lange and Weeks 1989) for set-recoded gen-
otypes (O’Connell and Weeks 1995). The Lange-Gor-
adia algorithm recursively uses the nuclear-family
relationships to eliminate invalid genotypes in the ped-
igree; the recursion is continued until no more genotypes
can be eliminated. The genotype-elimination algorithm
is more powerful than the nuclear-family algorithm be-
cause it can pinpoint subtle inconsistencies resulting
from the elimination of certain genotypes, on the basis
of more complex pedigree relations. For each pedigree
and locus, the genotype-elimination algorithm identifies
the first component nuclear family that is found with an
error that has not been identified already by the nuclear-
family algorithm, and it outputs the inferred-genotype
lists for each member of that nuclear family. Only one
nuclear family is reported, because a genotype-elimi-
nation error may propagate to other component nuclear
families, and, thus, ascertainment of whether the pedi-
gree contains only one such error or multiple distinct
errors is difficult. Figure 2 illustrates a pedigree that is
internally inconsistent but for which the nuclear-family
algorithm will detect no errors. Each component nuclear
family is consistent, but individual 4 determines phase
in individual 5, who in turn forces individual 3 to have
a 2 allele, which means that the parents of individual 3
must have a 2 allele, which is not the case.

We say that a genotype-elimination algorithm is com-
plete if it can detect that the set of given genotypes vi-
olates Mendelian laws of inheritance. Thus, if a complete
genotype-elimination algorithm finds no errors, then the
genotypes are consistent with Mendelian laws of inher-
itance, and linkage analysis can be performed. Although
the original Lange-Goradia algorithm is guaranteed to
be complete only for pedigrees without loops, we have
extended the algorithm and have proved that our ex-
tended algorithm is complete for all pedigrees (authors’
unpublished data). Thus, our genotype-elimination al-

gorithm is guaranteed to determine if the pedigree is
consistent.

Although our genotype-elimination algorithm will al-
ways find the subtle errors, the diagnostic output of the
inferred-genotype lists does not always permit easy iden-
tification of the source of the problem, since the genotype
lists for untyped individuals may be long. Even if there
is only one error, the individual involved may be difficult
to identify by examination of only the genotype lists,
since either more than one individual may be the possible
source of that error or the error may not be in the par-
ticular nuclear-family data appearing in the output.
Thus, we implemented two additional error-checking al-
gorithms that can be useful for finding the source of
these more subtle errors, as exemplified in the two ex-
amples of extended pedigrees given in the report by
Stringham and Boehnke (1996).

These two additional error-checking algorithms focus
on “critical genotypes,” which we define as those gen-
otypes of an individual that eliminate the pedigree in-
consistency when removed from the data—that is, when
scored as unknown. Although removal of a critical ge-
notype may eliminate the error, this does not necessarily
imply that the genotype is erroneous. For example, un-
typing a correctly typed parent may produce a consistent
pedigree when the error actually is caused by a child’s
genotype. The concept of critical genotype can be ex-
tended easily to “degree n critical genotypes,” which are
defined as an n-tuple of genotypes of scored individuals,
having the property that, when all n individuals in the
set are untyped simultaneously, the inconsistency is elim-
inated. Critical genotypes are analogous to critical points
and extrema of functions. The set of extrema is a subset
of the critical points. Here, the set of erroneous geno-
types is a subset of the critical genotypes. As mentioned
in the Introduction, Stringham and Boehnke’s (1996)
faster algorithm determines the critical genotypes of a
pedigree by using their likelihood-based statistic,

262 Am. J. Hum. Genet. 63:259–266, 1998

whereas our method uses genotype elimination. We now
describe the two additional error-checking algorithms.

Critical-Genotype Algorithm

In particularly complicated cases, one might want to
invoke the critical-genotype algorithm, which attempts
to identify the critical genotypes, if any, in the pedigree.
This is done by “untyping” one typed individual at a
time, by scoring him/her as having an unknown geno-
type and applying the genotype-elimination algorithm
to determine if the inconsistency has been eliminated.
For example, in figure 3 there are two critical genotypes:
the 2/2 of individual 2 and the 1/1 of individual 4. Un-
typing either of these individuals will eliminate the in-
consistency. There may be one or more critical
genotypes, or there may be none. If there are none,
higher-degree critical genotypes could be investigated, at
the cost of increased processing time, but we have not
yet encountered real data for which this has been nec-
essary. Note that if the critical-genotype algorithm finds
only one critical genotype, then that genotype represents
the error.

Odds-Ratio Algorithm

If the critical-genotype algorithm identifies several
critical genotypes at a locus, then we have no way of
deciding a priori which critical genotype is most likely
to be erroneous. To help distinguish between alternative
critical genotypes, we have implemented an odds-ratio
statistic based on single-locus likelihoods of the pedigree.
First, for each individual with a critical genotype, we
identify the valid typings that eliminate the inconsis-
tency. Note that we restrict our genotypes to contain
only alleles that appear in the pedigree under consid-
eration, although there may be other alleles at that par-
ticular locus in other pedigrees. Since, by definition, un-
typing an individual with a critical genotype results in
a consistent pedigree, we know that after genotype elim-
ination the individual must have at least one alternative
valid genotype. Second, for the particular locus, we com-
pute and store the likelihood of the pedigree data for
each alternative valid typing at each critical genotype,
holding all other critical genotypes at their original
value; that is, for each alternative genotype, compute the
likelihood L(pedigree and that alternative genotype). Let
Lmax be the largest likelihood obtained. Note that several
different genotypes may have the value Lmax. Then, for
each alternative genotype, we form the quantity Lmax/
L(pedigree with alternative genotype), which gives an
odds ratio against that alternative genotype versus any
genotype with likelihood Lmax. Any genotype with a
value of Lmax will have an odds ratio of 1, and, in general,
the best-supported genotypes will have an odds ratio
close to or equal to 1. The algorithm returns each al-

ternative typing together with its odds ratio. Note that
only the list of alternative genotypes could be used to
screen any newly suggested typing for its validity (a new
typing that is reliable but fails to remove the inconsis-
tency may indicate a nonpaternity error). Note also that
the odds ratio can be defined in terms of conditional
probabilities: Suppose we have a pedigree in which two
individuals have critical genotypes; if we let P1 and P2
represent the two individuals with critical genotypes, D
the original pedigree data (with P1 and P2 set to un-
known), G1 and G2 the original genotypes of P1 and
P2, respectively, and A1 and A2 any two alternative
genotypes for P1 and P2, respectively, then the odds ratio
is .P(DFP1 � G1, P2 � A2)/P(DFP1 � A1, P2 � G2)
Since we are attempting to determine which individual
is most likely to have a genotyping error, comparing the
probabilities for any two individuals, when alternately
scored with their original and alternative genotypes, is
a logical approach.

For example, with regard to figure 3, if we assume
that there are two alleles at the locus, then individual 2
has only one consistent alternative typing, namely, 1/2.
Individual 4, however, has two alternative consistent
typings, 1/2 and 2/2. For the odds-ratio algorithm, we
then would compute the likelihood of the pedigree, using
each of these three genotypes separately, find the max-
imum value, and compare the maximum value to each
of the three likelihoods. In two separate examples in the
Applications section, we illustrate the use of this odds
ratio as an indicator of the individual most likely to be
the source of the incompatibility. Since computation of
the likelihood requires that allele frequencies be speci-
fied, our odds-ratio algorithm has three variations: (1)
use the user-defined allele frequencies; (2) assume that
all alleles are equally frequent; and (3) use allele fre-
quencies estimated from all typed individuals in the input
file, by counting the number of times the allele appears
at a locus, divided by the total number of alleles present.
The last two variations are useful for checking raw data
without having to carefully specify allele frequencies as
required for linkage analysis. In general, use of estimated
instead of equally frequent allele frequencies leads to a
bigger spread in the odds ratios.

Implementation

Algorithms

We have implemented our four error-checking algo-
rithms in a computer program, PedCheck. In PedCheck,
we identify the algorithms in terms of levels: level 1
checking uses the nuclear-family algorithm; level 2
checking uses the genotype-elimination algorithm; level
3 checking uses the critical-genotype algorithm; and level
4 checking uses the odds-ratio algorithm.

O’Connell and Weeks: Genotype-Incompatibility Detection 263

Figure 4 Pedigree from Wijsman and Guo (Ott 1993), with one genotyping inconsistency. The symbols with a bullet in the center indicate
members of the nuclear family, identified by use of level 2 checking; the symbol with a boldface border indicates the individual with a critical
genotype; the plus sign (�) indicates the individual with the actual genotype error; and the arrow points to the individual identified by PedCheck
as most likely to have an erroneous genotype.

Timing Results

To illustrate the performance of PedCheck at each
level, we used an unloaded Sun Ultra 170 computer and
a test data set typical of a genomewide study, consisting
of 1,095 individuals and 289 markers (134,561 geno-
types). The data set was drawn from the U.K. Arthritis
and Rheumatism Council repository of material from
families with two or more affected siblings. For our ge-
nomewide test data set, level 1 checking took !1 min to
run and found seven inconsistencies, all in a single ped-
igree. The genotype-elimination algorithm is more com-
putationally intensive than the nuclear-family algorithm
but still is quite fast. Level 2 checking took 14 min to
run, for all 289 markers, and found two additional er-
rors, in two pedigrees not identified in level 1 checking.
Note that the level 2 option automatically runs level 1
first. Level 3 checking took 15 min and identified a total
of 23 critical genotypes. Again, the level 3 option au-
tomatically runs levels 1 and 2 first. Although our odds-
ratio statistic involves computation of the likelihood of
the pedigree, it is very fast to compute, since it involves
only single-locus likelihoods. Finally, level 4 checking
took 15 min to identify and perform a full-pedigree like-

lihood calculation for each of the total of 170 alternative
genotypes across the 23 critical genotypes.

With regard to checking data, level 1 is recommended
as a first check, particularly for large data sets that have
not been checked previously. If there are no level 1 errors
or if the errors have been corrected, then level 2 should
be run to detect more-subtle errors. Level 3 should be
run to determine the critical genotypes, and level 4
should be run to pinpoint the most likely source of error.
Level 2 should be rerun after any change in the data,
until PedCheck indicates that the pedigree is consistent.

Input Formats

Often, a researcher finds a problem with the pedigree
data only at the time of performing linkage analysis,
which means that both the raw allele-size data and the
individual IDs may have been already renumbered; in
such a situation, finding the error may involve tedious
cross-referencing of the new numbering against the orig-
inal raw data. Since error checking ideally is performed
on the raw data, PedCheck also has the capability of
handling pedigrees in LINKAGE format or pre-makeped
format and allele data in integer base-pair sizes, without

264 Am. J. Hum. Genet. 63:259–266, 1998

Figure 5 Diagnostic output from PedCheck, for pedigree in fig-
ure 4.

Figure 6 Eye-disease pedigree from the report by Stringham and Boehnke (1996), with one genotyping inconsistency. Alleles are given
in base-pair sizes. The symbols with a bullet in the center indicate members of the nuclear family, identified by use of level 2 checking; the
symbols with a boldface border indicate the individuals with a critical genotype; the plus sign (�) indicates the individual with the actual
genotype error; and the arrow points to the individual identified by PedCheck as most likely to have an erroneous genotype.

the need to specify allele frequencies. No LINKAGE-
format data file is required, except when user-defined
allele frequencies are used in level 4 checking; otherwise,
PedCheck requires only a file containing the names of
the markers. Note that, by design, PedCheck does not
check disease loci, since any inconsistencies at a disease
locus do not involve genotyping errors. VITESSE
(O’Connell and Weeks 1995) will identify any errors due
to an incorrect disease model.

Applications

We illustrate the performance of our PedCheck pro-
gram on the two challenging pedigrees analyzed recently
by Stringham and Boehnke (1996), in which the source
of the error is difficult to discern. The first pedigree,
displayed in figure 4, is from the research of Wijsman
and Guo (Ott 1993). When Stringham and Boehnke
(1996) applied their posterior-probability method

(which took 40 min at our workstation), they concluded
that individual 15 had a .995 posterior probability of
genotyping error. When we ran this pedigree through
PedCheck, using level 4 checking (which took 10 s), we
obtained the output shown in figure 5.

From this diagnostic output, obtained by use of the
higher-level options, we see that there were no level 1
errors, but there was a single level 2 error. If we consider
only the level 2 output, it is clear that both child 5 and
child 9 have a single unordered genotype—1/7 and 3/7,
respectively—after genotype elimination (“U” within
parentheses indicates that they originally were untyped
[fig. 5]). Child 8 has either a 3 allele or a 5 allele in all
of her possible genotypes. Thus, as Stringham and
Boehnke (1996) pointed out, children 5, 8, 9, and 11
are consistent with the parents having the four alleles
(1, 3, 5, and 7). However, child 3 has either a 2 allele
or an 8 allele in all of his possible genotypes, which
indicates that the most likely source of the error is among
his descendants (who are forcing him to have the 2 allele
and the 8 allele). In fact, if we now examine the output
from levels 3 and 4, we see that there is only one critical
genotype, in individual 15, who is a descendent of in-
dividual 3. Thus, PedCheck clearly identified individual
15 as the source of the error and indicated that genotype
3/8 has the best odds of being the correct typing. How-
ever, this pedigree actually includes a nonpaternity error;
so, the alternative valid genotypes are not relevant. Note
that nonpaternity errors are quite difficult to distinguish
from actual genotype errors, on the basis of any single-
locus statistic alone.

Figure 6 presents the second pedigree from the report
by Stringham and Boehnke (1996), for which the true
genotyping error was later revealed, by retyping, to be
in individual 28. When we ran this pedigree through
PedCheck, using level 4 checking (which took 5 s, com-
pared with 25 min for Stringham and Boehnke’s pro-
gram), we obtained the output shown in figure 7.

O’Connell and Weeks: Genotype-Incompatibility Detection 265

Figure 7 Diagnostic output from PedCheck, for pedigree in fig-
ure 6.

This output indicates that there are no level 1 errors,
indicating a more subtle genotype error. One level 2 error
appeared, but the genotype lists of the parents do not
easily reveal who in the family might have the erroneous
genotype. However, the level 3 output indicates that
there are three critical genotypes, in individuals 12, 28,
and 31, and the level 4 output indicates that each of
these individuals has two alternative consistent geno-
types. The level 4 odds ratios were determined by com-
puting the likelihood of the pedigree, for each of these
six genotypes separately; determining the highest like-
lihood; and then comparing the likelihoods, to form the
odds ratios. So, for example, the odds against individual
12 being typed 117/121 versus individual 28 being typed
117/117 are 3,100.8:1. Thus, level 3 checking imme-
diately identified three pedigree members to consider fur-
ther, and, in fact, these individuals belong to the same
nuclear family: individuals 28 and 31 are children of
individual 12. Therefore, untyping either child 28 or
child 31 will eliminate the inconsistency, and, in fact,
these two individuals had the highest posterior proba-
bility of error (.679 for individual 28 and .315 for in-
dividual 31), when analyzed by use of Stringham and
Boehnke’s approach. However, level 3 checking also
showed that untyping only the mother, individual 12,
also would eliminate the inconsistency, but she is not
indicated as a likely source of error, by Stringham and
Boehnke’s approach, since her posterior probability of
error was only .008. The reason is that all five of her
children inherited her 117 allele. The high odds ratios
generated by PedCheck also indicated that individual 12
is not the likely source of error. Thus, we would conclude
that individual 28 most likely has the erroneous geno-
type and that the correct genotype is 117/117. Retyping

revealed that this is in fact the true answer (M. Boehnke,
personal communication).

Thus, in these two difficult examples, our approach
not only identified the same individual that Stringham
and Boehnke (1996) identified as being the most likely
source of the error but also, in the second example,
predicted the correct typing, on the basis of the odds
ratios. We, however, are not advocating that the odds-
ratio statistic be used to “correct” erroneous genotypes
(this has to be done by use of the real data) but, rather,
that it be used as an indicator of which individuals are
the best candidates for follow-up in the lab. On the other
hand, researchers often choose to perform an analysis,
without correcting the error in the lab, by untyping
enough individuals until the pedigree is consistent. In
such a case, we recommend untyping an individual who
has an alternative typing with an odds ratio of 1 (or as
close as possible to 1).

Discussion

We have developed a new computer program,
PedCheck, to assist researchers with quick and efficient
identification of non-Mendelian inconsistencies in ped-
igrees. PedCheck uses four different error-checking al-
gorithms, ranging from a very fast check of the pedigree
errors to a more sophisticated check based on a likeli-
hood odds ratio.

Throughout this discussion we have implicitly as-
sumed that, if a pedigree is consistent with Mendelian
laws of inheritance, then there are no genotype errors.
Thus, we are not addressing genotyping errors that may
be present in pedigrees even though all the genotypes
are consistent. For example, the algorithm used by
Stringham and Boehnke (1996) computes prior proba-
bilities for every typed individual, not just for individuals
who have a critical genotype, so that consistent geno-
types also might be flagged as sources of error, partic-
ularly when those genotypes have rare alleles. Also, since
PedCheck performs only single-locus checks, it cannot
detect those errors that may become apparent only
through unusual linkage results or an excess of multiple
recombinants. To detect such errors, multipoint analysis
is often more useful, and therefore various approaches
have been implemented in software programs (Lathrop
et al. 1983a, 1983b; Sobel et al. 1995; Ehm et al. 1996).
Other types of pedigree error that may or may not pro-
duce an inconsistent pedigree are paternity errors or the
presence of half sibs treated as sibs. If these pedigree
errors are detected through genotype errors, then
PedCheck can assist the researcher, since there is an op-
tion to give summary statistics indicating the number of
loci at which each individual has a critical genotype;
thus, if an individual has a critical genotype at many
loci, this may indicate a pedigree error. Again, more-

266 Am. J. Hum. Genet. 63:259–266, 1998

specialized software has been developed for these types
of situations (Stivers et al. 1996; Boehnke and Cox 1997;
Göring and Ott 1997; Ehm and Wagner 1998). Finally,
although PedCheck was developed to find errors that
lead to inconsistent genotypes, the higher-level–checking
algorithms in the program can be easily adapted to iden-
tify any typed individuals who have valid alternative
genotypes that have an odds ratio greater than some
predefined threshold. If an individual had alternative
genotypes that were significantly more likely than the
original genotype, then this might be an indication that
the original genotype was an error. For future work, it
would be of interest to perform a detailed study of how
useful the odds-ratio statistic would be in the pinpointing
of these types of errors in pedigrees consistent with Men-
delian inheritance.

In routine genotyping, a large majority of genotyping
errors will be detected and diagnosed by simple level 1
error checking, which is computationally extremely fast.
A small fraction of genotyping errors will require a more
sophisticated level of diagnostic analysis, involving ex-
amination of the underlying genotype lists generated by
the genotype-elimination algorithm produced by level 2
checking. When this output does not indicate the source
of the error, level 3 and level 4 checking can be used to
identify the individual(s) most likely to be involved.
Thus, PedCheck should be able to make a significant
contribution, by virtue of its ability to quickly analyze
many loci with large numbers of alleles, using four pow-
erful error-checking algorithms at once. Occasionally,
there still will arise cases for which the program devel-
oped by Stringham and Boehnke (1996) will prove to
be very useful, particularly when a pedigree contains
many loops, since the algorithm to handle loops, in
MENDEL, is quite efficient.

Acknowledgments

This work was supported, in part, by National Institutes of
Health grant HG00932; the Wellcome Trust Centre for Human
Genetics at the University of Oxford; the University of Pitts-
burgh; Association Française Contre Les Myopathies; and the
W. M. Keck Center for Advanced Training in Computational
Biology at the University of Pittsburgh, Carnegie Mellon Uni-
versity, and the Pittsburgh Supercomputing Center. We thank
Paul Wordsworth for providing the test data set, the collection
of which was funded by the U.K. Arthritis and Rheumatism
Council. We also thank Carol Haynes, Meg Cooper, Tara Ma-
tise, Janet Sinsheimer, and the reviewers, for providing useful
comments. This program is not to be confused with PEDCHK
of S.A.G.E. (Case Western Reserve University 1994).

Electronic-Database Information

URLs for programs discussed in this article are as follows:

Genetic analysis system (GAS), version 2.0, http://users
.ox.ac.uk/˜ayoung/gas.html

PedCheck may be obtained by anonymous ftp to ftp://
watson.hgen.pitt.edu or to the European Bioinformatics In-
stitute mirror site, http://ftp.ebi.ac.uk

References

Boehnke M, Cox NJ (1997) Accurate inference of relationships
in sib-pair linkage studies. Am J Hum Genet 61:423–429

Case Western Reserve University, Department of Epidemiology
and Biostatistics (1994) Statistical analysis for genetic epi-
demiology (S.A.G.E.), release 2.2, Cleveland

Ehm MG, Kimmel M, Cottingham RW Jr (1996) Error de-
tection for genetic data, using likelihood methods. Am J
Hum Genet 58:225–234

Ehm MG, Wagner M (1998) A test statistic to detect errors
in sib-pair relationships. Am J Hum Genet 62:181–188

Göring HHH, Ott J (1997) Relationship estimation in affected
sib pair analysis of late-onset diseases. Eur J Hum Genet 5:
69–77

Lange K, Goradia TM (1987) An algorithm for automatic
genotype elimination. Am J Hum Genet 40:250–256

Lange K, Weeks D, Boehnke M (1988) Programs for pedigree
analysis: MENDEL, FISHER and dGENE. Genet Epidemiol
5:471–472

Lange K, Weeks DE (1989) Efficient computation of lod scores:
genotype elimination, genotype redefinition, and hybrid
maximum likelihood algorithms. Ann Hum Genet 53:67–83

Lathrop GM, Hooper AB, Huntsman JW, Ward RH (1983a)
Evaluating pedigree data. I. The estimation of pedigree error
in the presence of marker mistyping. Am J Hum Genet 35:
241–262

Lathrop GM, Huntsman JW, Hooper AB, Ward RH (1983b)
Evaluating pedigree data. II. Identifying the cause of error
in families with inconsistencies. Hum Hered 33:377–389

Lathrop GM, Lalouel JM (1984) Easy calculations of lod
scores and genetic risks on small computers. Am J Hum
Genet 36:460–465

Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for
multilocus linkage analysis in humans. Proc Natl Acad Sci
USA 81:3443–3446

Lathrop GM, Lalouel JM, White RL (1986) Construction of
human linkage maps: likelihood calculations for multilocus
analysis. Genet Epidemiol 3:39–52

O’Connell JR, Weeks DE (1995) The VITESSE algorithm for
rapid exact multilocus linkage analysis via genotype set-re-
coding and fuzzy inheritance. Nat Genet 11:402–408

Ott J (1993) Detecting marker inconsistencies in human gene
mapping. Hum Hered 43:25–30

Sobel E, Lange K, O’Connell JR, Weeks DE (1995) Haplo-
typing algorithms. In: Speed TP, Waterman MS (eds) Genetic
mapping and DNA sequencing. Springer-Verlag, New York,
pp 1–22

Stivers DN, Zhong Y, Hanis CL, Chakraborty R (1996) REL-
TYPE: a computer program for determining biological re-
latedness between individuals based on allele sharing at mi-
crosatellite loci. Am J Hum Genet Suppl 59:A190

Stringham HM, Boehnke M (1996) Identifying marker typing
incompatibilities in linkage analysis. Am J Hum Genet 59:
946–950

	PedCheck: A Program for Identification of Genotype Incompatibilities in Linkage Analysis
	Summary
	Introduction
	Error-Checking Algorithms
	Nuclear-Family Algorithm
	Genotype-Elimination Algorithm
	Critical-Genotype Algorithm
	Odds-Ratio Algorithm

	Implementation
	Algorithms
	Timing Results
	Input Formats

	Applications
	Discussion
	Acknowledgments
	Electronic-Database Information
	References

